
Central Processing Unit
The CPU is made up of three major parts, as shown in Fig(25).

1- The register set stores intermediate data used during the execution of the instructions.
The arithmetic

2- logic unit (ALU) performs the required microoperations for executing the instructions.
3- The control unit supervises the transfer of information among the registers and instructs

the ALU as to which operation to perform.

General Register Organization
The memory locations are needed for storing pointers, counters, return addresses,

temporary results, and partial products during multiplication.
A bus organization for seven CPU registers is shown in Fig(26):

The control unit that operates the CPU bus system directs the information flow through
the registers and ALU by selecting the various components in the system. For example, to
perform the operation:

𝑅1 ← 𝑅2 + 𝑅3

The control must provide binary selection variables to the following selector inputs:
1. MUX A selector (SELA): to place the content of R2 into bus A.
2. MUX B selector (SELB): to place the content of R3 into bus B.
3. ALU operation selector (OPR): to provide the arithmetic addition A + B.
4. Decoder destination selector (SELD): to transfer the content of the output bus into Rl.
To achieve a fast response time, the ALU is constructed with high-speed circuits.
There are 14 binary selection inputs in the unit, and their combined value control word
specifies a control word. The three bits of SELA select a source register for the A input of the
ALU. The three bits of SELB select a register for the B input of the ALU. The three bits of
SELD select a destination register using the decoder and its seven load outputs. The five bits
of OPR select one of the operations in the ALU.
The encoding of the register selections is specified in Table(14):

Table(15) OPR field has five bits and each operation is designated with a symbolic name.

For example, the subtract microoperation given by the statement:

𝑅1 ← 𝑅2 − 𝑅3

The binary control word for the subtract microoperation is 010 01l 001 00101 and is obtained
as follows:

Stack Organization

A useful feature that is included in the CPU of most computers is a stack or last-in, first-
out (LIFO) list. The two operations of a stack are the insertion and deletion of items. The
operation of insertion is called push, while the operation of deletion is called pop. In a 64-word
stack, the stack pointer contains 6 bits because 26 = 64.
The push operation is implemented with the following sequence of microoperations:

The pop operation consists of the following sequence of microoperations:

Instruction Formats

The format of an instruction is usually depicted in a rectangular box symbolizing the
bits of the instruction as they appear in memory words or in a control register. The bits of the
instruction are divided into groups called fields. The most common fields found in instruction
formats are:
1. An operation code field that specifies the operation to be performed.
2. An address field that designates a memory address or a processor register.
3. A mode field that specifies the way the operand or the effective address is determined.
An example of an accumulator-type organization, the instruction that specifies an arithmetic
addition is defined by an assembly language instruction as:

𝐴𝐷𝐷 𝑋

Where 𝑋 is the address of the operand. The ADD instruction in this case results in the
operation:

𝐴𝐶 ← 𝐴𝐶 + 𝑀[𝑋]

An example of a general register type of organization the instruction for an arithmetic addition
may be written in an assembly language as:

𝐴𝐷𝐷 𝑅1, 𝑅2, 𝑅3

to denote the operation:
𝑅1 ← 𝑅2 + 𝑅3

The following is a program to evaluate 𝑋 = (𝐴 + 𝑏) ∗ (𝐶 + 𝐷) :
with three-address instruction formats as:

Two-address instructions formats as:

One-address instructions use an implied accumulator (AC) register for all data manipulation
as:

Addressing Modes
Computers use addressing mode techniques for the purpose of accommodating one or

both of the following provisions:
1. To give programming versatility to the user by providing such facilities as pointers to
memory, counters for loop control, indexing of data, and program relocation.
2. To reduce the number of bits in the addressing field of the instruction.
PC holds the address of the instruction to be executed next and is incremented each time an
instruction is fetched from memory. An example of an instruction format with a distinct
addressing mode field is shown in Fig(27).

Immediate Mode: In this mode the operand is specified in the instruction itself. In other
words, an immediate-mode instruction has an operand field rather than an address field.
Register Mode: In this mode the operands are in registers that reside within the CPU. The
particular register is selected from a register field in the instruction.
Register Indirect Mode: In this mode the instruction specifies a register in the CPU whose
contents give the address of the operand in memory.
Auto-increment or Auto-decrement Mode: This is similar to the register indirect mode
except that the register is incremented or decremented after (or before) its value is used to
access memory.
The effective address is defined to be the memory address obtained from the computation
dictated by the given addressing mode.
Direct Address Mode: In this mode the effective address is equal to the address part of the
instruction.
Indirect Address Mode: In this mode the address field of the instruction gives the address
where the effective address is stored in memory.
The effective address in these modes is obtained from the following computation:

effective address = address part of instruction + content of CPU register
Relative Address Mode: In this mode the content of the program counter is added to the
address part of the instruction in order to obtain the effective address.
Indexed Addressing Mode: In this mode the content of an index register is added to the
address part of the instruction to obtain the effective address.
Base Register Addressing Mode: In this mode the content of a base register is added to the
address part of the instruction to obtain the effective address.

Numerical Example:

1- The two-word instruction at address 200 and 201 is a "load to AC" instruction with an
address field equal to 500.

2- The first word of the instruction specifies the operation code and mode, and the second
word specifies the address part.

3- PC has the value 200 for fetching this instruction.
4- The content of processor register Rl is 400, and the content of an index register XR is

100.
AC receives the operand after the instruction is executed. The Fig(28) lists a few pertinent
addresses and shows the memory content at each of these addresses.

Answer:
1- In the direct address mode the effective address is the address part of the instruction 500

and the operand to be loaded into AC is 800.
2- In the immediate mode the second word of the instruction is taken as the operand rather

than an address, so 500 is loaded into AC. (The effective address in this case is 201)
3- In the indirect mode the effective address is stored in memory at address 500. Therefore,

the effective address is 800 and the operand is 300.
4- In the relative mode the effective address is 500 + 202 = 702 and the operand is 325.

(Note that the value in PC after the fetch phase and during the execute phase is 202)
5- In the index mode the effective address is XR + 500 = 100 + 500 = 600 and the operand

is 900.
6- In the register mode the operand is in Rl and 400 is loaded into AC. (There is no

effective address in this case)
7- In the register indirect mode the effective address is 400, equal to the content of Rl and

the operand loaded into AC is 700.
8- The auto-increment mode is the same as the register indirect mode except that Rl is

incremented to 401 after the execution of the instruction.
9- The auto-decrement mode decrements Rl to 399 prior to the execution of the instruction.

The operand loaded into AC is now 450.
Table (16) lists the values of the effective address and the operand loaded into AC for the
nine addressing modes.

Data Transfer and Manipulation
Most computer instructions can be classified into three categories:

1. Data transfer instructions.
2. Data manipulation instructions.
3. Program control instructions.

Data transfer instructions cause transfer of data from one location to another
without changing the binary information content. The table(17) list the Data

transfer instructions:

Data manipulation instructions are those that perform arithmetic, logic, and
shift operations. The data manipulation instructions in a typical computer are
usually divided into three basic types:
1- Arithmetic instructions.
2. Logical and bit manipulation instructions.
3. Shift instructions.

